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A new moving finite difference (MFD) method has been developed for solving
hyperbolic partial differential equations and is compared with the moving finite
element (MFD) method of K. Miller and R. N. Miller. These methods involve the
adaptive movement of nodes so as to reduce the number of nodes needed to solve a
problem; they are applicable to the solution of non-stationary flow problems that
contain moving regions of rapid change in the flow variables, surrounded by regions
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of relatively smooth variation. Both methods solve simultaneously for the flow
variables and the node locations at each time-step, and they move the nodes so as to
minimize an ‘error’ measure that contains a function of the time derivatives of the
solution. This error measure is manipulated to obtain a matrix equation for node
velocities. Both methods make use of penalty functions to prevent node crossing. The
penalty functions result in extra terms in the matrix equation that promote node
repulsion by becoming large when node separation becomes small. Extensive work
applying the M¥E and MFD methods to one-dimensional gasdynamic problems has
been conducted to evaluate their performance. The test problems include Burgers’
equation, ideal viscid planar flow within a shock-tube, propagation of shock and
rarefaction waves through area changes in ducts, and viscous transition through a
contact surface and a shock.

1. Introduction

Two of the most widely used methods of discretizing partial differential equations
(ppESs) are finite elements and finite differences. Finite-element and finite-difference
methods that use uniformly spaced nodes often waste computational effort, because
to obtain acceptable truncation errors in regions of large solution variation much
smaller node separations than are necessary in regions of negligible solution variation
must be used. In the case of flows containing moving shocks, contact surfaces and
slip streams, only a very small portion of the domain requires small node separations;
thus significant economies can be obtained by moving the nodes so that they remain
concentrated about areas of large solution variation.

To resolve a viscous shock transition properly the node separation in the vicinity
must be several times smaller than the shock thickness. The shock thickness is
related to the value of the coefficients of the second-order spatial-derivative (or
diffusion) terms in the ppEs, often being of the same order of magnitude as these
coefficients when the PDEs are written in normalized form. Hence, as the coefficients
of the second-order terms are reduced, the shock thickness is reduced also. Non-zero
coefficients are required to prevent infinitely steep, and thus aphysical, shock fronts
and allow a non-zero node separation within a properly modelled shock. For
commonly modelled physical scales and gas viscosities, physically accurate
coefficients are usually extremely small and are in practice replaced by larger
coefficients to allow larger node separations to be used. The use of adaptive methods
allows much smaller node separations, and hence much smaller (more physically
realistic) coefficients and much thinner shocks, than can in general be accommodated
by non-adaptive methods. The ability to use smaller coefficients in the second-order
terms also results in a more realistic growth of the thickness of contact surfaces with
time. It should be noted that much larger time-steps are possible when the nodes
move with a shock wave than can be obtained with a fixed non-uniform grid; time
derivatives evaluated in the moving frame tend to be constant or zero.

Reviews of the field of adaptive solution are given by Hawken (1990), Hawken
et al. (1991), Thompson et al. (1982, 1985), Thompson (1984, 1985), Turkel (1983),
Anderson (1983) and Kiseman (1987). As pointed out by Thompson (1984), an
adaptive-node method must have several ingredients:

(@) an orderly method of numbering (or mapping) nodes distributed over the
physical region of interest;

Phil. Trans. R. Soc. Lond. A (1992)
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A new finite-difference solution-adaptive method 375

(b) a means of ‘communicating’ between nodes so that the distribution of nodes
remains fairly regular as they are shifted;

(¢) a means of representing the continuous solutions discretely and a means of
evaluating the discrete values with sufficient accuracy;

(d) a measure of the error in the discrete values that bears some relation to the
truncation error; _

(e) a means of redistributing the nodes as indicated by the measure, so as to reduce
solution error. \

On a one-dimensional domain, a second-order, multi-component PDE may be
written in the form

04 04 azAjl

a "0X0X?

where 4 = A[X,t] = [4,,4,... 4] is the K component solution, X is the spatial
coordinate, ¢ is the time coordinate, F = [F|,F,...F,] is a K-component function
containing spatial derivatives of second or lower order. The components of the
solution should be normalized to avoid the numerical difficulties that may arise if two
components differ by several orders of magnitude.

The physical domain is unevenly divided into N intervals by nodes labelled 0 to N.
The amplitude of each component at node i is denoted by A%, and the position of each
node by X’ The two adaptive methods that are compared in this paper both
minimize an error measure to obtain a value for the velocity of each node.

The nodes are redistributed to minimize or reduce the average (in some sense)
value of the measure. In the type of problems that are solved herein, it is essential
to compute the values of the gasdynamical variables and the node velocities
simultaneously to achieve acceptable solution accuracy and time-step size.

(1)

=F[X,t,A
b'e

2. The moving finite element method

Miller & Miller (1981) and Miller (1981) devised a finite-element-based solution-
adaptive technique, which they call the moving finite element (M¥E) method. The
method has been further developed by Djomehri & Miller (1981), Gelinas et al. (1981,
1982a, b), Gelinas & Doss (1981, 1982, 1983), Djomehri (1983), and Miller (1983,
1986). In this method the error measure may be interpreted as being the square of
the residual of the PDE written in finite-element form. Ordinary differential equations
(opms) for the nodal value of the physical variable and the nodal coordinate are
obtained by minimizing the integral of error measure over the spatial domain. A
version of the MrE method was coded as part of the process which led to the
development of the finite-difference solution-adaptive method introduced in this
paper. A brief description of the MFE method follows.

Piecewise linear approximation functions for each component are defined by

A [X 1] = g A7, o, (2)
i=0
where o is a linear ‘Hat’ basis function defined by
0 if X <X,
X-X"H/AX"  if XT'<X <X
(X1 —X)/AX if Xi< X < X, (3)
0 if X' <X,
Phil. Trans. R. Soc. Lond. A (1992)
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where AX? = X*— X% This is the simplest possible basis function and simplifies
subsequent algebra. As a consequence of the choice of basis function o, it can be
shown that the time derivative of 4%, at a fixed spatial coordinate is given by

o4n yNoooo N
to=2A 0+ XX, (4)
O |x iz i=0

where A%, and X’ are the time derivative of component m of the solution at fixed
node-number i and the time derivative of the position (velocity) of node 7,
respectively, and where £, is a basis function for component m and is defined by

0 if X < X,
—M @ if XTI X < X7,

Pl X1 = Mty if Xt < X < Xt (5)
m = s
0 if XX,
i i gi-1
In the above, M = Ay _ Ay = Ay,

m AXE - Xt Xi-1 (6)

is the slope of component m between nodes ¢ and ¢—1. Note that £, is a
discontinuous function of X since M?, is discontinuous.

Values for the time derivatives at fixed node number are obtained by minimizing
the integral, over the spatial domain, of an estimate of the discretization error. The
integral of the sum of the weighted squares of the residuals of the differential

equations,
xN K n
= J “m [agltm
x° =1

m

_Fmrdx (7)

X
is minimized, by requiring that for all components k£ at each node j
ol /0X7 = 3l J0A%, = 0. (8)

This minimization yields equations which may be rewritten in matrix form and
solved as discussed in §4. The weighting constants w,, are scalar factors usually of
order unity. The nodes move so that the residual with the largest value of w,, will
tend to have the smallest magnitude. Note that integrals containing complex forms
of F,, will be difficult to code and expensive to evaluate. Details of these difficulties
are discussed by Hawken (1990).

3. The moving finite difference method

The moving finite difference (MFD) method began as an attempt to capture some
of the computational advantages of the MFE method while avoiding the expense
associated with the computation of integrals of more complex partial differential
equation terms. In particular, any term that requires numerical integration in the
MFE formulation will slow the code down considerably. A second, unforeseen
advantage of the MFD method is the larger time-steps obtained for a given problem
as compared to those obtained by the MrrE method.

It is convenient to transform to a numerical coordinate system (£,¢) that moves
with the nodes and in which the nodes are equidistributed such that £ = 7. An extra

Phil. Trans. R. Soc. Lond. A (1992)
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A new finite-difference solution-adaptive method 377

factor proportional to the node velocity will appear in the transformed ppEs. One
may approximate the PpDEs by applying spatial central differences at each node in
order to obtain ordinary differential equations (oDEs) in time for the solution
amplitudes at the nodes. These oDEs may be written as

(% 'iSAin_ i

where 8X'=X"1—X1 §41 = AW1— A"t and f! is the central difference
approximation to ¥, at node ¢.

A value for the velocity of each node must be supplied. In the case of the MFE
method, there is a natural minimization based on the sum of the squares of the
discretized ppEs. There is no such obvious strategy for an adaptive finite difference
method. It is merely desirable that nodes be concentrated in regions of large
variation of the solution.

Most adaptive finite-difference methods attempt to minimize an ‘error’ measure
that contains a function, usually ad hoc, of the first or second derivatives of the
solution. The error-measures have included the absolute value, square, or positive
even power of the estimated truncation error of 4 or of the node-to-node change in
A or of a function of the slope or second derivative of 4 in the spatial coordinate
system. Such error measures do not contain time derivatives and thus do not directly
result in equations for the node velocities.

One can devise special manipulations to obtain expressions for node velocities
using the above error measures but it is preferable to start with measures that
already contain time derivatives. A correctly designed error measure that contains
time derivatives will indirectly monitor the variation of the right-hand side of
equation (9) and adjust node spacing so that the finite differences contained therein
will be accurate. The development of a minor variation in the solution may be the
result of a major variation in the time derivative of the solution. A measure that
includes monitoring of variation of the time derivative should thus be more sensitive
to ‘error’ than one that only monitors variation of the solution. Attempts to use an
error measure that does not contain time derivatives as a basis for computing node
velocities have resulted in very nonlinear or complex algorithms (see, for instance,
Hindman & Spencer 1983; Rai & Anderson, 1980, 1982).

(a) Use of an error measure based on time derivatives of the solution

In developing the MFD method the aim was to retain a number of MFE advantages
in addition to the use of time derivatives in the error measure. The MFE method uses
a block tridiagonal matrix equation that allows the motion of a node to be influenced
by the motions of all the other nodes. The relatively small band width of the matrix
results in economical assembly and solution of the matrix equations. Certain matrix
coefficients include factors of slope so that the influence on the velocity of a given
node by the velocities of other nodes is reduced in regions of small slope ; the motions
of nodes resolving one feature of the flow (shock, contact surface, rarefaction wave)
are relatively uninfluenced by the motion of the nodes resolving some other flow
feature separated by a region of relatively small spatial variation of the solution. The
MrE formulation allows moving shock solutions where nodes with constant amplitude
move with constant velocities in the interior of the domain but are able to react to
the proximity of a solid boundary where amplitude at a given node must change

Phil. Trans. R. Soc. Lond. A (1992)
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rapidly to follow the reflection of a shock. It is desirable that the m¥p procedure
should involve some sort of variational or minimization principle similar to that used
in the MmrE method but avoid the use of integration.

After a great deal of numerical experimentation the following error measure was
initially developed:

K N . . i i & 34l TP
= X w,[—AF1+241 —AV P fo X 2X =X Y o, [W] . (10)
m=1 m=1

The first sum contains a measure of the node-to-node variation of the time derivative
of node amplitudes; the solution component with the largest value of w,, will tend to
have the smallest node-to-node variation of time derivative. As in the M¥E method,
the values of w,, are of the order of unity and their exact values are not critical. If
Wy, 18 non-zero, the second sum will result in a small node-to-node change in node
velocity wherever some component of the solution has a large slope.

To obtain values for the node velocities, I* is minimized with respect to the node
velocity. For the purpose of minimization, I is considered to be a function of the
node velocity only, and hence the time derivatives of the node amplitudes are
expanded as functions of the node velocity using (9). The equation for node velocity
is obtained by requiring that

drt/dX’ = 0. (11)
The resulting equation for the velocity of node ¢ is
K N ) K 54!
X o[~ Ay 24—y 10 4 [~ X 2K X Py [ SXZ] = fhees

(12)

with fi ., = 0. (f%,, will be given non-zero values in developments to be described
below.)

The constant wy,, can be set to zero with good results for many problems; the
measure I* then simply monitors the node-to-node variation of the time-derivative of
node amplitude. In this case I' can be zero in spite of a very large node-to-node
variation of the time derivative of the solution at fixed X; consider nodes moving
across a domain in step with a shock wave of constant amphtude To obtain a
measure that is more sensitive to the node-to-node variation of the solution one
might use the sum of the squares of the node-to-node variation of the left-hand sides
of the opEs for each component given by (9). Unfortunately, the equation for node
velocity that results from minimizing this measure is simply a linear combination of
the left-hand sides of the original opEs. The equation is very similar to (12) with wy,,
set to —1 (the coefficients are identical wherever the solution has the same slope at
three adjacent nodes). A compromise value of wy,, = —1 gives an equation for node
velocity that has some sensitivity to the variation of the time derivative of at fixed
X but is still linearly independent of the right-hand side of (9). Other reasons why it
is sometimes appropriate to set w,,, to —3% are given by Hawken (1990).

4. Matrix equations

Equation (12) for all 4, in combination with equation (9) for all 7 and m (or the MrE
equations generated by the minimization of the residual in (7)), comprise a system

Phil. Trans. R. Soc. Lond. A (1992)
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A new finite-difference solution-adaptive method 379

of (K+1) x (N+1) equations. It is convenient at this point for purposes of clarity of
illustration to specialize to a system of three PDEs (K = 3); most of the gasdynamical
problems whose solutions are illustrated herein were solved in terms of three
principle variables (gas velocity, density, and temperature). If one defines two
column-vectors of dimension (3+1) x (N+1),

U=[A9, 43,43, X0, ... AN, AN AN XN|*°
as the vector of time derivatives of the unknowns at each time-step, and
E=[fL08 0500 U 205008

as the vector of right-hand sides (T is the transpose operator), then (9) and (12) can
be put in the form

[D1U = E, (13)
where
C 0] IR 7
([0 [BY O
(L4 [C7] (R
D] = L

(L [0 (8]

[LY] (e ]

is a block tridiagonal matrix. The left, central and right submatrices are square
matrices of dimension (K+1)x (K+1).
In the case of the MFE method, the submatrices for K = 3 are given by

—

IAXT 0 0 —1 ’1
0 IAX 0 ' —1 ’2
(L e = 0 0 dAX* —eAd; )

1 A 1 A 1 [ 3
—iw, AA! —iw,AA} —iw,AA ; ;
6271 1 672 2 673 3 1 Z’Zz ﬁ4z
Z §Wm My m

m=1

[Ryre = L yrr, and [Clyps = 2[L  ype + 2[R . The components of E are
computed using

N
fi= [, aryax (14)
XO
K XN
and f;{+1 = E wm ﬁQszde (15)
m=1 x°

Evaluations of these integrals are discussed in Hawken (1990), Miller (1981), Gelinas
et al. (1981) and Djomehri (1983).

Phil. Trans. R. Soc. Lond. A (1992)
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In the case of the M¥FD method, the submatrices for K = 3 are given by
i 84t ]
1 0 0 -t
X!
0 i 0 o
i dX!
[C*]urp = i )
0 0 1 _04s
Xt
0A% 04} 04} 3 04,17
_2&)1 -S—XZ 2(1)2 "‘Sﬁ 2(03 'S')? 2(1)4 m}jl W, W i
0 0 0 0
. 0 0 0 0
[L lmpp = 0 0 0 0 )
0AY 04} 04} 3 [SA;L]Z
—0so; —Wiswr —Wiswys Wy 2 Op|wor
18X 25X! 88X! ol MLX

and [R'ypp = [L]ypp-

The matrix [D] for the MFD method has certain similarities to that of the MrE
method. The coefficients of [D] for a given node are only influenced by the values of
the solution and node coordinate at the given and adjacent nodes, which greatly
simplifies the computation of jacobian matrices for both methods. The matrix
coefficients of the M¥D method are similar in form to those of the MFE method, except
for an additional factor of node separation in the denominator. In both methods, the
coefficients of the node velocities have an extra factor of slope as compared with the
coefficients of the time derivatives of the amplitudes.

Since node separation may become very small, the matrix equation may become
stiff (in particular when waves interact with stationary structures) and require the
use of a stiff oDE solver. It is most efficient to use an implicit method that requires
the periodic computation of the jacobian (or matrix of derivatives with respect to the
components of U) of E— U[D]. Equation (13) is solved using an adaptation of the
implicit multistep backward-difference predictor-corrector algorithm, EPISODE.
Various versions of EPISODE, which is descended from the method of Gear (1971),
are described in Byrne (1979), Hindmarsh (1979) and Byrne & Hindmarsh (1975).
The solution at a time-level, predicted using interpolation of the solution from
previous time-levels, is corrected using a matrix equation that incorporates the
jacobian. Following the strategy of Miller (1981) and Gelinas et al. (1981), the
EPISODE algorithm was modified so that in addition to the usual tolerance on
the size of the correction to the solution (including the spatial coordinate) at each
node, a less stringent tolerance is specified on the size of the correction to the value
of node separation (set equal to ten times the former tolerance).

Direct solution of (13) is required at the initialization of time iterations and as one
of the steps in the (relatively infrequent) computation the jacobian. For the m¥D
method in those instances, it is convenient to use (9) to eliminate the time derivatives
of the node amplitudes from (12). Then one needs simply to solve a tridiagonal
system of equations for the node velocities and use (9) again to obtain the resultant
time derivatives of the node amplitudes. Since [D]is not so sparse in the MFE method,
it is necessary to manipulate the full block tridiagonal matrix.

Phil. Trans. R. Soc. Lond. A (1992)
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It is necessary to specify boundary conditions to compute the solution at node 0.
(The boundary at node N is treated in a similar manner.) The (K+1)st row of
(13) is always replaced by

X0=0

at a boundary since the spatial coordinate of a boundary node is fixed. If 49, is
specified at a boundary, then the mth row (m < K) of (13) is replaced by

A® = corresponding value of time derivative.

If 4,, is not specified at the boundary, it is assumed that the slope of 4,, is zero
at the boundary ; the mth row of (13) is approximated by assuming symmetry about
the boundary for all components of 4 that have zero slope and antisymmetry about
the boundary for all components of 4 that have specified values at the boundary.

5. The Q terms for the MFD method
(a) Failure of mrr method and simple MFD method on stationary problems

The adaptive finite difference method that has been described up to this point has
one failing. To distinguish it from later refinements, it will henceforth be called the
simple MFD method.

The right-hand side of (12) is zero for the simple M¥D method. Consider the special
case where the right-hand side of (9) is zero for all components of 4 throughout the
domain. In this case, the solution of the problem at any time is given by the initial
values. All components of E in (13) are zero. A solution of the system of equations
yields zero node velocities, even though there might be some benefit in moving the
nodes so as to increase their concentration in regions where the solution has a larger
error measure. The system of equations generated by the MmFE method also yields zero
node velocities when the right-hand sides of the ppEs are zero for all components of
A throughout the domain. :

In other words, the MmrE and simple MFD methods assume that the initial conditions
have a good node distribution and move the nodes thereafter to preserve this
distribution in some sense. Extensive application of the MFE and simple MFD methods
to a number of test PDEs has revealed that there is a strong tendency for the nodes
to move along the solution characteristics. That is, the time derivatives of 4 at each
node tend to be small relative to the node velocity in the interior of undisturbed
moving shock and rarefaction waves. This tendency to follow characteristics is most
easily understood in the case of the MFD method. Ignoring the effect of boundary
conditions, examination of [L']ypp, [C%lyrp, and [R]ypp should make it clear that if
each node moves at the local characteristic velocity so that the components of the
solution are constant at the node, the MFD matrix equation will be satisfied whenever
the velocity of a node is the average of the node velocity at the two adjacent nodes
(if w, is zero the second condition is not required but is satisfied anyway to a fairly
good approximation). There is no provision in the MFE or simple MFD methods to
prevent nodes from drifting away from optimum positions or to attract them into
more optimal positions. For instance, consider the problem of a rarefaction wave
transmitted through an area reduction in a duct. If a recompression or stationary
shock forms within the area change, the tendency of the nodes to follow the
characteristics is so strong that few nodes remain within this stationary shock.

Phil. Trans. R. Soc. Lond. A (1992)
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(b) Improvement of MrD method by use of solution-based error measure

In problems that contain stationary waves of constant profile, the problem
described above can be alleviated by adding a measure containing a spatial variation
of the solution to the measure containing a spatial variation of the time derivative
given by (10). There should be a component of time derivative in this new measure
so that the derivative with respect to node velocity will be non-zero and the
functional form of the new measure should be similar to that of (10). One possibility
is to replace the time derivatives in (10) by an average of the solution at the present
and next time-steps.

The result of the replacement is

) K . . . . K 6441/ 2
Iy= X wm[_A?;l+2A;1—A2;1]2+a)K+1[—X”1+2Xl — X 1]2 Z w [sz] , (16)

m=1
where X=X +{AX! and A}, = 4}, +3A4], (17)

are approximations to the time averages, with At being the size of the time-step.

A linear combination of (16) and (10) produces an improved measure that contains
a weighted influence from the spatial variation of the solution averages. Equation
(16) is multiplied by £2/At, where £ is the weighting constant, and the result is added
to (10). The equation for node velocity is obtained by writing the composite measure
as a function of node velocity only, using (9) and (17) and requiring that

L (Q/AN L) /dXT = 0. (18)

The result divided by [1+1€Q At] is identical to (12) except that f&,, is no longer zero
but is given by

K
Fhoa =40 3 045~ 245+ AT o Q204X S 0|
m=1

1,

a0
dX |’
(19)

where Q = Q/[1+1Q At]. The above will be referred to as the ‘Q terms’ hereafter.

For sufficiently small £ and At, the €2 terms will have negligible dependence on the
time-step size. The weighting constant € chosen should be small enough so that the
influence of solution spatial variation will become important only if the time
derivatives become quite small, as in a stationary wave of constant profile.
Excessively large values of © will reduce the time-step size without improving
solution quality.

6. Penalty-function terms and other MFE refinements

Penalty functions were introduced by Miller (1981) and Miller & Miller (1981), and
further developed by Gelinas et al. (1981), Djomehri (1983) and Miller (1983), as a
means of preventing nodes from crossing each other in regions of large solution
variation, and also to prevent singularity of the matrices associated with the MrE
method. (Examination of the MFE submatrices reveals that their rows are linearly
dependent in regions of uniform slope, that is, regions where the slope is the same in
adjacent elements.) These penalty functions have been adopted, in modified form, for
use in the MmFD method. In both the mrE and the MFD methods there is a tendency
for the nodes to concentrate excessively in the interiors of shock waves since the
nodes tend to follow the characteristics, which coalesce in a shock (and cross for

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

\
\
8 \
i

a
//\

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A \
)

[

y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

A new finite-difference solution-adaptive method 383

inviscid problems). Extra terms are inserted into the MrE and MFD equations used for
calculating the node velocities (every (K+1)th row of (13)). These terms become
dominant when the nodes are very close together and in addition prevent degeneracy
of the system of equations in regions of zero slope (and, in case of the MmFE method,
in regions of uniform slope). The extra terms are the result of minimizing the
following measure of relative node velocity and node position,

[e]X7 — X1 — 72, (20)

M=

I,=

i=1
by requiring that /X" =0 (21)

for all nodes 7. In this measure, ¢! and s’ are positive functions of AX? and are defined
in such a way that they become very large when AX" is very small or approaches some
specified minimum value. Under such conditions the change in node velocity from
node to node will approach a value dictated by the ratio of s’ to ¢’

The result of the minimization,

— Xt 1elel 4+ X1[elel + i 1ei+1] — X1+t 1gi+1 = gigl — git1gi+1, (22)

is added to the MmrE and MFD equations for calculating the velocity of each node 1.

Various types of penalty function have been used. Gradient weighted penalty
functions, originally introduced by Gelinas & Doss (1981), have proven to be the
most straightforward and convenient to use. The present formulation, where

K AA’L 2 o
o= | 14+0g 3 [_m] ]/ AXT— 0,16 23
3[ szl AX [ 0] ( )
and dist = C,/[AX"—C %, (24)

and the methods of choosing initial trial values for the weights C;, C, C, are based
on the work of Djomehri (1983). The coefficients of node velocity in the equation for
calculating the velocity of node ¢ vary as [A4¢,]?/[AX?] for the MFE method and as
[04%,12/[8X*)? for the MmFD method. O is set to 1 for the MFE method and to 2 for the
MFD method to obtain matching variation of e‘e’ with node separation. O, the
minimum node spacing, may be set to zero in most cases. C, is chosen to be 20 or 30
times larger than the square of the allowable spatial truncation error so that e‘e’ only
becomes important if [AA4?]? is relatively small. The gradient weighting in (23)
causes ¢'e’ to become very large within regions of large slope and thus prevents the
rapid expulsion of nodes from the interiors of shocks that occurs in some cases; Cg
has ranged from 1072 to 107® when not set to zero.

It can be shown that second-order spatial derivatives (arising from diffusion
processes) substituted into the integral of (15) result in terms of the form
[AA!, /AXT2—[AALT /AXP1)? in the MFE equation for calculating the velocity of node
t. These terms tend to prevent node crossing and hence have an effect complementary
to that of the es’ terms. For the mre method, C, is set to 2 and C, is chosen to be 20
or 30 times smaller than the square of allowable spatial truncation error multiplied
by the diffusion coefficient so diffusion terms will dominate e's’—e"*1s™*1 unless
[AA4% 1% is very small for all components of the solution. The same form of the e’s®
terms has been retained for the Mrp method but C, is increased to 3 to provide a
better balance with the larger value of C;.

The considerable numerical experimentation required to obtain optimum final
values for the penalty-function weights represents the most difficult task in using the
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MFE and MFD methods. Note that the penalty functions do not enhance adaptivity
but are included to prevent singularity of the matrices, node crossing, and excessive
entry of nodes into the interiors of shocks.

A number of ways, in addition to the use of penalty functions, of improving
performance have been developed by the authors of the MFE method. Two of these
methods, overemphasis of diffusion and horizontal emphasis, have been implemented
in the code and are discussed below.

It is shown by Djomehri (1983) and Miller (1983) that if penalty functions are not
used then all the nodes tend to move into the interior of a shock, causing insufficient
resolution at the top and bottom of the shock. Only MFE terms resulting from second-
order spatial derivatives in the PDES tend to oppose this motion, but they are unable
to push the nodes out of the shock because the diffusion coefficients are generally too
small. Djomehri (1983) and Miller (1983) improved the beneficial effects of the
diffusion terms by multiplying any second-order spatial derivative term included in
the integrals in (15) by the scalar factor 1+ D, where D represents the ‘amount’ of
overemphasis of diffusion. They show, using some model equations, that 1 > D >0
is a sufficient condition to obtain a monotone solution near a shock. The use of
overemphasis of diffusion makes it easier to choose penalty-function coefficients that
will prevent all the nodes from entering a shock without driving too many nodes out
of the shock.

Djomehri (1983) has modified the MFE equations so that changes in X’ are more
important than changes in the magnitude of A4’ (terms horizontal and vertical
movement, respectively, by Djomehri) in minimizing the integrals of the residuals.
The MFE equations remain the same except that, in the bottom row of each mrFE
submatrix, the coefficients of the time derivatives of the components of 4 at each
node are multiplied by a scalar horizontal emphasis parameter. A horizontal
emphasis parameter value of one yields the original MFE method, while a value of
zero causes the node velocities to be uninfluenced by the time derivatives of 4. The
use of a horizontal emphasis parameter with a value less than unity reinforces the
tendency of the MFE method to produce ‘travelling wave’ solutions in which the
nodes travel with the wave with essentially no change in the value of 4 at each node.
Any tendency of nodes at the front end of a shock to drift or creep back through the
shock is reduced. As added benefits, the nearly constant time derivatives at each
node result in much larger time-steps and the positive definiteness of [D], and
therefore the stability of the MFE equations is enhanced.

7. Alternative 2 terms derived from minimization of an error measure

It is possible to obtain an alternative to the £ terms of (19) by using the calculus
of variations. The following has been inspired by the work of Hindman & Spencer
(1983).

The integral of an error measure

X[ o] WX
]: —_— = - = dX 2(
[MEEIRS )
is to be minimized. W is a measure of solution variation and «, f, and A are scalar
constants. § is a computational coordinate chosen so that & is equal to ¢. The power

o exceeds 1, whereas £ exceeds 0. In the method of Hindman & Spencer, they were
set to 2 and 1 respectively. The first term in the integrand promotes smoothness of
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the transformation, whereas the second term promotes concentration of nodes in
regions with a large value of W. In contrast with the method of Hindman & Spencer,
where W was defined to be [04 /0§]? for a single component problem, here W, in its
simplest form, will be [04 /0X]2. The calculus of variations is applied to the integral
to yield the Euler equation

o d 0 0¢ y[oX
reavamemmllal] L] | 20
The solution of the Euler equation,
oX 1-a X 1+4
A[Eg] - W[E] = const., (27)
is differentiated with respect to £ and divided by [0X /£ to obtain
X [oX T+ 62X awaow _

To reduce nonlinearity in subsequent equations, the equation above will not be
rewritten in the ‘forcing function’ form of Hindman & Spencer. Instead, the
equation is approximated at each node ¢ by using central differences to obtain

Xitl _oxi +Xi 1 Wz+; + Wz——

—[a—1]A X7 /;’+1]________[Xi+1_2Xi+X¢—1]
2

B WH%— Wi—é X+ i1
1 2

Here Wit and Wit are estimates of W in the middle of the interval to each side of
node 7 and are defined by
" é(: [ AAHI]Z

AX’L+1

=0. (29)

Note that nodes will tend to equldlstrlbute in regions of uniform slope, thereby
reducing spatial truncation error. The value of W at node ¢ has been approximated
as an average of Wi and W%, and the derivative of W with respect to £ has been
approximated by the dlfference divided by £+ — g% = 1.

Equation (29) can be rearranged to resemble the right-hand side of the MrD
equation for node velocities including penalty terms and £ terms. The term
proportional to A corresponds to an alternative form of efs' —e**1s**1; the value of «
may be chosen so that a+ £ is an integer. As.detailed in Hawken (1990), two forms
of this term gives rise to alternative penalty terms that are inferior in performance
to the penalty terms described in §6. The rest of the terms in (29) may be rearranged
to resemble the Q terms of (19).

By rearranging (29), setting A to zero, dividing by f+2, and introducing the
weighting constant €', an alternative form of the £ terms,

; 3 AA’L+1 2 AAZ 2
et S S5 0 3]
3 AAH-I 2
—1Q AX’[B le [AX“I] +

3 AAzn 2
2 on| 3| | @0

m
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is obtained, where B = /[ +2]. Details of the derivation of, and justification for,
(30) are provided in Hawken (1990).
Equation (29) may also be written in the form

AXT {la— U] L/[3BXT A+ 3B P
AX'  {{a— 1| L/[SX P+ Wit L BW

(31)

where L = A/[f+2]. It is easily seen that, if (29) is satisfied, X’ lies between X*** and
X! for non-zero L. When L is zero, it is apparent that AX**1/AX" ~ B if Wi*% is much
larger than W% and that AX?/AX"*! ~ B if W% is much larger than Wi*s, Therefore
the value of £ places a limit on the maximum ratio of node separation in regions of
non-zero slope. Larger values of # will cause an increased averaging of the estimates
of W and increase the order of spatial truncation error as the maximum ratio of node
separation approaches one but will reduce the adaptivity of the nodes. If 1 > 8 > 0,
then a very large maximum node separation ratio may occur. The quantity B is
called the ‘maximum-ratio-of-node-separation parameter’ in this paper.

Use of the £ terms complicates selection of penalty-function weights. However,
two rules have been found to be of use. If " is of the order of unity, then the penalty-
function coefficients should be close to those used for zero Q’, except that C, should
be about 20 % larger. For larger values of €', doubling £’ requires an approximate
doubling of 0, and C,, with C, increased about 20 % more than C,. One initially uses
a value of zero for €’. Then, if necessary, the results of using progressively larger
values of ©" are compared to the best result with zero Q.

A similar rule has been discovered for variation of Reynolds number. If the
Reynolds number based on the speed of sound is halved, then C, and C; should be
approximately doubled, with €, increased about 20 % more than C, to increase node
spread.

The results of the Mm¥p method given by (9) and (12) with non-zero Q terms will be
compared to the results of the MFE method in §§8-11. Specification of the value of B
provides an influence on the variation of node spacing throughout the domain. An
optimal value of B for the problems solved appears to be ca. 1. Use of non-zero Q’
generally provides a higher-quality solution than use of non-zero €. The value that
gives the best results for Q generally is close to the value that gives the best results
for Q" if B ~ ;. Tolerances per time-step of 107* on X and each component of 4 and
of 1073 on the node separation were specified in all cases. All the calculations were
performed on a Perkin Elmer 3250 minicomputer.

8. Burgers’ equation test problem

This test problem is based on that of Miller (1981). It consists of the adaptive
solution, on the domain 0-1, of Burgers’ equation,

oUu U’OU 1. OPU

P Lol .

introduced by Burgers (1948). The initial values of U at each node are given by
U' = sin (nX") +sin (2nX?). The Dirichlet condition, U = 0, is applied at X = 0 and
X =1 and 14 is set to 1072
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16

normalized velocity

Q8 — .

normalized distance

Figure 1. Profiles from the standard MFp solution of Burgers’ equation from ¢t =0 to t = 5. At =
0.05 from t = 0 to t = 1.6 and A¢ = 0.2 thereafter. Parameters: 31 nodes, €, = 0, €, = 1.25 x 107,
C3=48x10"%(,=3,0,=2,2 =15 B=0.25 0, =1, w,=—0.5.

() Results of mFp calculations

The MFD method was applied to Burgers’ equation using 31 nodes that were
initially equidistributed. The solution weight w, was set to one, and v, was set to —1.
€’ and the maximum-ratio-of-node-separation parameter B were set to 1.5 and 1
respectively. The penalty-function coefficients were €, =0, 0, = 1.25 x 1071 ¢, =
4.8x107® and C; = 0 with powers C, =3 and C; = 2. The calculation described
above will be referred to, in what follows, as the ‘standard MFDp calculation’.

The resultant profiles of U at various times from ¢ = 0 to ¢ = 5 are shown in figure
1. A wave sweeps to the right and steepens into a shock whose amplitude decays as
it continues to sweep to the right. The shock eventually reaches the right-hand end
of the domain and further decays in situ. The entire calculation took about two CPU
minutes and required the computation of 46 jacobians and a total of 766 finite-
difference evaluations of the right-hand side of (13). Since the calculation was
implicit, the size of the time-step exceeded the linear CFL limit by factors as large
as 853 as the shock decayed after reaching the end of the domain. The final value of
At, at t =5, was 0.32, and the fraction of the total integration-time span that used
the first-, second-, third- and fourth-order EPISODE opi-solution methods were
about 0.8 %, 18%, 77% and 5% respectively. The CPU time increases by a factor
of at least 13 if functional iterations, which do not use a jacobian, are used. Figure
2a, b illustrates the node distribution at various times during the calculation. It can
be seen that the nodes round out the corners as is desirable. Similar results occur if
@ = 1.5 is used instead of ©’. If the number of nodes is reduced to 21, unacceptable
kinking occurs.

Increasing C, increases node separation, driving nodes out of the shock, but it does
not increase node concentration at the corners; increasing C, reduces the node
spread, allowing more nodes to enter the shock, without appreciably increasing the
node concentration at the corners. Increasing C, and C,; together increases the node-
to-node change in U within the shock and may increase execution speed, but
excessive values will cause oscillations at the corners as nodes are driven apart.
Similar behaviour resulted for the test problems discussed in §§9-11.

If the standard MFD calculation is repeated with 2" = 2, too many nodes enter the
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(b)

normalized velocity

-0.8

0 ' 05 10 0 Tos 10
normalized distance normalized distance

Figure 2. Typical node distributions corresponding to the profiles of figure 1 for (a) t =0, 0.2, 0.4,
0.6,0.8,1.0, 1.2 and 1.4; and (b) ¢t = 1.6, 2.4, 3.2, 4.0 and 4.8.

167

o
o

=]

normalized velocity

S

0 s 10

-08

normalized distance

Figure 3. Node distributions at ¢ = 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4 if the standard M¥D solution
of Burgers’ equation is repeated with w, changed from —0.5 to 0 and if the resultant node
distribution is improved by reducing £’ from 1.5 to 1.

shock, leaving too few to round out the corners. If 2’ is set to 1, the nodes do not enter
quite so far into the shock and do not round out the corners as well as in the standard
MFD calculation. Setting £’ to zero results in severe kinking at the top of the shock.
If the standard MFD calculation is repeated with w, = 0, too many nodes enter the
shock and concentration of nodes is greatly reduced at the top corner of the shock.
Reducing £’ to unity improves matters slightly but still leaves small kinks at the top
and bottom of the shock due to the poor node concentration, as shown in figure 3.
Adjustments of other parameters do not improve matters.
The standard M¥Dp calculation was repeated with the advection term written in
conservation law form:
oU tou® | O*U
o = 3ox TPaxe ©3)
The results are of similar quality but the shock decays more slowly and moves more
quickly. The CPU time was about the same.
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(b) Results of MFE calculations

The mFE method was applied to the Burgers’ test problem with the same number
of nodes. The solution weight was w, = 1. The penalty-function coefficients were
Cy=1073 C,=2x%x107° C; =8x107%, and C, = 0 with powers (, = 2 and C; = 1.
The calculation described above will be referred to, in what follows, as the ‘standard
MFE calculation’.

The resulting profiles agreed well with those of the mMFD calculations and, as
illustrated in figure 4, the typical node distributions were reasonably close to those
obtained by the Mm¥Dp method. The mrE CPU time was more than twice that of the
MFD method and required the computation of 196 jacobians and a total of 2472 finite-
element evaluations of the right-hand side of (13). The reason why the MFD
calculation is not about four times faster than the Mm¥E calculation, as would be
implied by the ratio of jacobian evaluations or of right-hand side evaluations, is that
the MFD code is experimental and contains many options that increase flexibility at
the expense of execution efficiency. The speed advantage of the experimental MFD
code becomes more pronounced as the number of nodes and number of PDEs are
increased.

As the shock decayed after reaching the end of the domain, the size of the time-
step exceeded the linear CFL limit by factors as large as 54; the larger Courant
numbers obtained by the MFD method were the result of generally larger time-steps
and smaller node separations. The final value of At, at t =5, was 0.31, and the
fractions of the total integration-time span that employed the first-, second-, third-
and fourth-order EPISODE obpE-solution methods were about 0.08 %, 7%, 66 % and
27 % respectively. If functional iterations are used, the MFE computation fails to
reach t = 0.25, despite the use of 5000 evaluations of (13).

If the number of nodes is reduced to 21, the CPU time is reduced to about the same
as that of the MFD solution, but not quite enough nodes are forced out of the shock
to prevent kinking at the top and bottom of the shock. Increasing C; to 2x 1073
greatly improves the results. As shown by comparison of figures 4 and 5, there is no
visible reduction in quality relative to a calculation using 31 nodes. The MFE method
is much more tolerant of large changes in slope between elements than is the M¥D
method. As mentioned earlier, unacceptable kinking occurs near the top of the shock,
if Burgers’ equation is solved with 21 nodes using the M¥FDp method.

The standard mFE calculation was repeated with the convective term written in
conservation-law form. Unfortunately, the CPU time was much larger than for the
nonconservation-law form. Although no evidence of instability was seen up to ¢ =
0.15, the time-integration did not proceed to ¢t = 0.2 despite the use of 5000 finite-
element evaluations of the right-hand side of (13). A number of parameters were
varied, but no improvement was obtained.

9.. Shock-tube problem

A shock tube with closed ends containing air initially with a uniform temperature
and zero velocity is illustrated in figure 6. At the start of the problem, the air in the
driver section of the shock tube (to the left of a diaphragm) is at twice atmospheric
pressure, whereas the air in the region to the right of the diaphragm is at atmospheric
pressure. Upon removal of the diaphragm a rarefaction wave proceeds to the left and
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16 Figure 4 16 Figure 5
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Figure 4. Node distributions from the standard MFE solution of Burgers’ equation fort = 0, 0.2, 0.4,
0.6, 0.8, 1.0, 1.2 and 1.4. Parameters: 31 nodes, C, = 1 x 1073, ¢, =2x107°, C;, = 8x 1075, C, = 2,
Oy =1, w;, = 1.

Figure 5. Node distributions that occur for ¢t =0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4 if the standard
MFE solution of Burgers’ equation is repeated with the number of nodes reduced to 21 and with
Cy=2x1073

normalized density

@ 6 E 2 3
©]| 6 IR §c 2 S
®» a4 Rl 3 Bc2]S 1

(@) 4 D 1

Figure 6. Shock tube at t =0 (a), t = 0.5 (b), t =2 (¢) and t = 2.8 (d) and density profiles within
shock tube from ¢ =0 to ¢ = 3.2 with At = 0.1 (¢). D = diaphragm, R = rarefaction wave, C =
contact surface, S = shock wave.

a shock wave travels to the right. The cooling of the gas by the leftward moving
rarefaction wave and the heating of the gas by the rightward moving shock produces
a jump in temperature and hence in density. This ‘ contact surface’, contained in the
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constant flow region between the rarefaction and shock waves, travels to the right at
the gas velocity. The constant flow regions on either side of the shock, contact
surface, and rarefaction wave are labelled 1, 2, 3 and 4, going from right to left. At
later times, the shock wave and rarefaction wave reflect off the end walls of the shock
tube, creating new constant flow regions 5 and 6 respectively. Owing to the relatively
small pressure jump between regions 1 and 4, the temperature change resulting from
the passage of the rarefaction and shock waves will not appreciably effect the value
of the specific heat ratio: therefore, y is set to the constant value of 1.4 in the
calculations that follow.
(a) Equations

The set of partial differential equations describing the time evolution of a gas in
the one-dimensional domain can be written using density, gas velocity and
temperature as the principal variables (denoted p, V and 7', respectively). To avoid
numerical difficulties associated with disparate magnitudes of the solution com-
ponents, it is desirable to normalize the variables by replacing p by p/p,, V by V/a,,
Tboy T/T,, X by X/Ly and t by a,t/Ly. p;, a; and 7} are the unnormalized density,
speed of sound and temperature in the (undisturbed) low-pressure region and Ly is
a normalization length. Note that, because the gas is calorically and thermally
perfect, we write a; = 4/(yR7}), where R is the gas constant. The partial differential
equations, assuming that there are no composition changes, no long-range electrical
or magnetic interactions, and no body forces, may be written in the form

op op oV
a- VP (34)
VoV 1 0pT . 2 10
o =TV X TR paxe (35)
or __or Wy 1T 2yfy—1]1[OV]
and LD L A 7yt chla Py d (36)

where Re is the Reynolds number and Pr is the Prandtl number (constant value of
0.71).
(b) Initial conditions

The initial profiles for the solution should contain finite gradients with rounded
corners. It is convenient to model the density transition as

pIX] = p+3dptanh [2[X, — X1/ L], (37)

where X is the position of the diaphragm, where L, is the initial thickness of the
pressure transition, and where g is the average density and §p is the density change
across the diaphragm (equal to 1.5 and 0.5, respectively for this shock-tube problem).
A linear-ramp profile can also be used but results in smaller time-steps at early times.
It is desirable to adapt the initial node distribution to the initial conditions for the
problem. The nodes are placed, subject to limits on smallest- and largest-allowed
node separation, so as to roughly equidistribute the magnitude of the product of the
second derivative of the pressure times the square of the node separation. The
algorithm used is
V €inax

Xii-l — X'l iAXSmallm——_)’
max

(38)
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where AX ., is the smallest-allowed node separation, o is the square of the ratio of
the smallest and largest allowed node separations, and

¢ = [0°P"/0X? (39)
is an error measure evaluated at node 4. ¢!, is the maximum value of ¢, which occurs

o 2[Xp—X]/Ly =+In[v/(3+1)/v/(3—1)] = £0.658, (40)
if the ‘tanh’ density profile is used.

The algorithm is started with a node placed at one of the maxima of the error
measure and proceeds in two directions: towards the centre of the pressure transition
and towards the adjacent boundary. The node positions at the extremes are adjusted
to be equal to the value of X at the boundary and at the centre of the transition.
Nodes are placed about the other maxima in the same way. AX_ ., is chosen to be
several times smaller than Ly, which in turn is chosen to be somewhat smaller than
the expected equilibrium thickness of the shock. In some cases it is convenient to add
or remove nodes ‘by hand’ to fine tune the initial node distribution.

(¢) Boundary conditions

Many of the problems solved used the ‘reflection’ boundary condition at the closed
ends of the shock tube. That is, the slope of density and temperature (or density and
total energy) was set to zero, while the velocity (or momentum density) was assumed
to be antisymmetric and, therefore, equal to zero at the boundary. The effect of this
Neumann boundary condition is equivalent to a wave, incident at a boundary,
colliding head-on with an identical wave of opposite orientation, so that no gas will
flow across the boundary.

An alternative procedure is to specify Dirichlet boundary conditions that impose
a similar symmetry. The Dirichlet reflection boundary conditions were adapted
from expressions derived by Groth & Gottlieb (1988). The velocity, density, and
temperature at the boundary node are expressed in terms of the same quantities at
the nearest interior node using expressions derived from the head-on collision of two
identical shock waves or two identical rarefaction waves.

(d) Results of MFD calculations

The m¥p method was applied to the shock-tube problem using (34)—(36) with a
Reynolds number of about 2500. The solution weights were v, = w, = wy = 1 and
w, = 0. " was equal to 128 with the maximum-ratio-of-node-separation parameter
B set to 3. The penalty-function coefficients were Cy =0, C, =1.2x107"7, C, =
1.9x107% and Oy = 1/1024 with powers €, =3 and C, = 2. Dirichlet reflection
boundary conditions were specified at the ends of the shock tube.

The initial tanh density profile and node distribution was computed for the domain
X=0toX =4, with Ly =107 Xy =1, AX..; = 1.25x 107 and o = 5 x 10~°. The
profile originally contained 182 nodes, but this was reduced to 97 nodes by removing
every second node except at the extreme left of the domain. This culling procedure
produced an especially smooth grid distribution having extra nodes on the left to
help round out the corners of the initial rarefaction wave.

Figure 7a-c shows plots of density, temperature and pressure within the shock
tube at successive time intervals from ¢ = 0 to ¢ = 3.2. The calculation used about
23 min of CPU time and required the computation of 64 jacobians and a total of 1509
finite-difference evaluations of the right-hand side of (13). At ¢ = 3.2, the value of At
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Figure 7. (a) Density, (b) temperature and (c) pressure profiles from ¢ = 0 to ¢ = 3.2 with At = 0.1,
obtained from the standard MFD solution of the shock tube problem. Parameters: 97 nodes, C, = 0,
C,=12x107,0,=19x103,0,=3,0,=2,0,=1/1024,Q" =128, B=0.25,0, =0, = w; = 1,
w, = 0, Dirichlet reflection boundary conditions.

was about 0.028 and the fractions of the total integration-time span, which used the
first-, second- or third-order EPISODE obpE solution methods were about 0.0009 %,
68 % and 32 % respectively. Note that the value of V},/a, and the ratios of p, 7" and
P across the initial and reflected shock waves and rarefaction waves were within a
fraction of a percent of the values predicted by inviscid analytical formulae. Also,
nearly invisible jumps in the solution occur at the boundaries since the Dirichlet
conditions are not strictly correct for a viscid calculation, but the solution elsewhere
is not disturbed thereby.

A slight reduction in quality of shock reflection was obtained if the Neumann
reflection boundary conditions were imposed instead of Dirichlet reflection boundary
conditions; as illustrated in the density profiles of figure 8, fine-scale oscillations of
small amplitude are produced.

Calculations of reduced quality using smaller or zero values of £ have also been
performed. For both versions of the refiection boundary condition, oscillations of
increasing size occur in the reflected shock wave as Q" approaches zero. However, the
quality of the calculation before the time of reflection of the shock is excellent. Figure
9 illustrates the density profiles from ¢t =0 to ¢t = 2.5 for £’ = 0 with the penalty
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Figure 8 Figure 9
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Figure 8. Density profiles from ¢ = 0 to ¢t = 3.2 with At = 0.1, obtained by repeating the standard
MFD solution of the shock tube problem with Neumann reflection boundary conditions.

Figure 9. Density profiles from ¢ = 0 to ¢t = 2.5 with At = 0.1, obtained by repeating the standard
MFD solution of the shock tube problem with altered parameters. Altered parameters: ' =0,
C,=4x10"° C; =9x1075.

_Figure 10 _ Figure 11

normalized temperature
normalized velocity

=006 0 006 —006 0 006
normalized distance normalized distance
Figure 10. Temperature profiles within the contact surface from mMrp calculation. The square

symbols represent the numerical solutions at ¢t = 0.1, 0.3, 0.5, 0.7, 0.9, 1.1 and 1.3. The solid lines
are computed from the analytical formulae of Hall (1954).

Figure 11. Velocity profiles within the contact surface from M¥p calculation. The square symbols
represent the numerical solutions at ¢t = 0.1, 0.3, 0.5, 0.7, 0.9, 1.1 and 1.3. The solid lines are
computed from the analytical formulae of Hall (1954) as modified by Hawken (1990).

function coefficients reduced to C, =4 x 107 and C; = 9 x 107°. The profiles of the
solution within the contact surface and shock wave are compared with analytically
derived profiles below.

The solid lines in figure 10 are the profiles of temperature in the contact surface
computed for various values of normalized time using the approximate theory of
Hall (1954). The square symbols are obtained from the numerical results by
transforming to a frame where the contact surface is stationary and centred on the
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Figure 12. Pressure profiles within the shock wave from MFD calculation. The square symbols
represent the numerical solutions from ¢ = 0.01 to ¢ = 0.20 at intervals of 0.01. The solid lines are
computed from the analytical formula of Lighthill (1956) as modified by Honma & Glass (1983).

origin. Good qualitative agreement can be seen. A similar comparison of analytical
and numerical values of the velocity profile through a contact surface where the
numerical estimate of V,/a, has been subtracted from the numerical results is shown
in figure 11. The spread and decay of the velocity hump for the numerical calculation
is in good qualitative agreement with the theory of Hall as modified by Hawken
(1990). Note that the height of the largest hump in the figure is less than 2% of V,/a,.
The greatest systematic disagreements occur on either side of the tallest profile, and
this is due to the close proximity of the rarefaction wave, contact surface and shock
att = 0.1. The agreement is quite good considering the approximations made by Hall
and the fact that the initial conditions of Hall do not exactly match those of the
numerical solution.

In figure 12, the solid lines are the pressure profiles through the shock computed
using the theory of Lighthill (1956) as modifed by Honma & Glass (1983). The
symbols were obtained from the numerical results by transforming to a frame where
the origin moves with the centre of the shock. The profiles are displaced slightly
relative to one another to maintain clarity of display. In view of the weak shock
assumption of Honma & Glass, the agreement is quite good. The, initially, very thin
shock profile grows in thickness at very early times to approach the asymptotic
profile predicted by Taylor (1910). The tendency for the shock to grow in thickness
owing to the influence of heat conduction and viscosity is balanced by the tendency
to steepen owing to coalescence of characteristics as the limiting Taylor profile is
reached.

Typical minimum node spacings in the vicinity of the shock were about 0.002L .
This suggests that a non-adaptive finite-difference method would require at least
2 x 10® nodes to solve the same problem. The MFD method required less than g5 of this
number of nodes. Note that node separations as small as 107°Ly have occurred
during the reflection of the shock off the end of the shock tube.

Similar calculations with double the Reynolds number have been performed. The
quality of the rarefaction waves, contact surface and running shock wave was quite
good but the reflected shock wave contained excessive oscillations. For gasdynamic
problems in general, the MmFD method solution deteriorates if the Reynolds number
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is much greater than 10°. This is a limitation shared by the mre method and is caused
by noise generated during numerical estimation of the jacobian of the discretized
ppES. It has been indicated by Djomehri (1983) that if an analytical (laboriously
derived) jacobian is used, the Reynolds number can be ten times larger. Even so, the
contact-surface thickness will be smaller only by the factor 4/10. Computation of an
analytical jacobian is appropriate for a more specialized code than the one developed
in the work reported herein.

Calculations, using momentum density, density and total energy per unit volume
as the principal variables so that the system of equations could be put in
conservation-law form, were only slightly inferior in quality to ones described above
but typically required more than a 50 % increase in CPU time. Differencing of the
leading terms in (34)—(36) enhances the diagonal dominance of the jacobian of (13)
and results in larger time-step sizes than if the PDEs were in conservation-law form.
Even replacing the right-hand side of (34) by —0(pV)/0X, to put it in conservation-
law form, increases CPU time.

(e) Results of mrr calculations

The MFE method was applied to the shock tube problem using (34)—(36), and the
same initial conditions, number of nodes, and initial distribution were used as for the
previous MFD calculations. Neumann reflection boundary conditions were specified at
each end of the domain. The horizontal-emphasis parameter was 0.65 and the
overemphasis-of-viscosity value was set to 1.1. The solution weights were v, = w, =
w, = 1. The penalty-function coefficients were €, = 0, ¢, = 1.4 x 1078, C;, = 1.6 x 107*
and C = 1/1024 with powers ¢, = 2 and C; = 1.

Figure 13a—c shows plots of density, temperature, and pressure within the shock
tube at successive time intervals. These results are almost as good in quality as those
of the previous MFD calculations. However, fewer nodes followed the penetration of
the contact surface by the reflected rarefaction than in the M¥D calculations; hence,
solution quality suffers there.

The temperature profile within the contact surface and pressure profile within the
shock wave have alsc been computed and are quite similar to those obtained by the
MFD method. However, as is illustrated in figure 14, the velocity profile within the
contact surface exhibits a sudden jump in height from one time level to the next. This
jump may be indicative of a small-scale instability in the MFE solution.

It took about 48 min of CPU time to reach ¢ = 3.2 and required the computation
of 164 jacobians and a total of 3544 finite-element evaluations of the right-hand side
of (13). At ¢ = 3.2, the value of At was about 0.012 and the fractions of the total
integration-time span which used the first-, second- or third-order EPISODE opE-
solution methods were about 3%, 73 % and 23 % respectively. The MFE calculations
spent a somewhat smaller proportion of time using the higher order EPISODE opE-
solution methods than did the Mrp calculations and was somewhat slower.

Since the solution essentially consists of travelling waves of constant amplitude, a
large horizontal-emphasis was used to dramatically speed up the calculation without
causing deterioration of the solution. A similar calculation with reduced horizontal-
emphasis (parameter equal to 0.90), required more than 70 min to reach ¢ = 3.2.
Transmission of nodes through the contact surface exhibited little change. A similar
calculation having a horizontal-emphasis parameter of 1 required more than 80 min
to reach ¢t = 1.1. Use of larger overemphasis of viscosity also did not significantly
improve the solution.
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Figure 13. (a) Density, (b) temperature and (c) pressure profiles from ¢ = 0 to ¢ = 3.2 with At = 0.1,
obtained from the MFE solution of the shock tube problem. Parameters: 97 nodes, C, =0,
C,=14%x10"% C,=1.6x10" C, =2, C;=1, C,=1/1024, horizontal emphasis = 0.65, and
overemphasis of viscosity = 1.1, w; = w, = w, = 1, Neumann reflection boundary conditions.

-

normalized velocity

-0.06 0 0.06

normalized distance
Figure 14. Velocity profiles within the contact surface from MFE calculation. The square symbols
represent the numerical solutions at ¢ =0.1, 0.3, 0.5, 0.7, 0.9, 1.1 and 1.3. The solid lines are
computed from the analytical formulae of Hall (1954) as modified by Hawken (1990).
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10. Rarefaction wave in a duct with an area reduction

In this problem, a rarefaction wave of pressure ratio 0.45, moving in a gas with
specific heat ratio 1.4, is incident from the left on an area reduction with A /4, equal
to 0.40, as illustrated in figure 15. It causes a flow from right to left through an area
increase. This was originally a test case for Gottlieb & Saito (1983) and Gottlieb &
Igra (1983). They used the random choice method to solve an inviscid set of
equations using density, momentum density and total energy per unit volume as the
principal variables.

(@) Equations

In the work reported here it has proven beneficial to use velocity, density and
temperature as the principal variables. The resulting equations in normalized form
are

%_ 0 V24

IR G SR & (41)

oV OV 1T 2 1V

o=V Typ ox Thepoxe (42)
and
T _ar v dnd _ y 13T 2y[y—1] L[V
a - VU T U St w s aet T e plax) @)

where 4 is the cross-sectional area of the duct. Equations (41) and (43) may be
obtained by adding a source term proportional to dIn4/2X to (34) and (36). Much
smaller source terms, derived from a detailed analysis of diffusion effects, have been
neglected since only macroscopic phenomena are of interest for this calculation.

The cross-sectional area to the left of the area change is 4;, whereas that to the
right is Ag. The area change has a length of one in normalized spatial coordinates.
It is convenient to start the area change at the origin. The cross-sectional area at any
point is given by

A, if X<o,
AX)=d{drexpiIin[dg/4 ][l —cosnX]] if 0<X <1, (44)
Ay if 1<X,

so that the area at each edge of the transition will blend smoothly with the areas on
the left and right sides.
An artificial-viscosity term of the form

2u O*pT

*Re ox?

(45)

was inserted into (41) to suppress fine-scale oscillations in the vicinity of stationary
shocks. The artificial viscosity coefficient, s, was set to 0.4. Reducing the value of u
by a factor of ten causes a slight increase in the amplitude of the oscillations,
increases CPU time by about 3%, and does not produce noticeably thinner shocks.

The incident rarefaction wave was modelled as a linear transition in flow velocity
with a normalized length of § and with the head located at —1. A total of 97 nodes
was used. The nodes were highly concentrated within the rarefaction wave and area
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Figure 15. Ilustration of a rarefaction wave moving towards an area reduction in a duct.

change but were spread further apart elsewhere. Neumann reflection boundary
conditions were used, but the left-hand and right-hand boundaries were placed at
X = —16 and X = 14, respectively, to avoid impingement by waves during the course
of the calculation.

The normalized flow velocity to the left of the incident rarefaction wave was
computed from P,,, the pressure ratio across the rarefaction wave, using the
analytical relationship

Var = = 2[1 =[Py |77 /[y —1]. (46)

The initial value of V is made to vary linearly from V,; at the tail to 0 at the head
of the rarefaction wave, and the initial values for density, and temperature are
computed as required from V, using isentropic relations.

(b) Results of mFp calculations

The MmrD method was applied to (41) (including the artificial viscosity term), (42)
and (43) with the same Reynolds and Prandtl numbers used in the shock tube
problem. The solution weights were w; =1, w, =4 and w, =1, with w, = 0. The
penalty-function coefficients were Cy =0, €, =3x107° C; =48 x107* and (g =
0.01 with powers C, = 3 and C; = 2. " was equal to 2 with the maximum-ratio-of-
node-separation parameter B set to ;. The calculation required 36 min CPU time to
reach t = 13.44.

Figure 16a—d illustrates the MFD spatial profiles of pressure, flow velocity, density
and entropy at increasing times. The entropy, S, normalized by the gas constant, R,

may be expressed in the form
1 P
S= —Mln[ ] (47)

y—1 [p”
The entropy of the initially undisturbed right-hand side of the domain is arbitrarily
assigned the value of zero, and the density and pressure are normalized by their
undisturbed values. The logarithmic entropy function reduces the relative strength
of the shock waves so that weak contact surfaces will be readily visible; it also
overemphasizes the presence of noise in the numerical solution.

The first portion of the incident rarefaction wave passes through the area
reduction to become the transmitted rarefaction wave. A weak reflected rarefaction
wave is also visible. Note that the process of transmission and reflection is distributed
over the entire area change. The progress of a wave through an area change can be
visualized as creating a series of infinitesimally weak reflected and re-reflected
disturbances that eventually coalesce. The transmitted and reflected waves
eventually leave the area change and a steady flow is established asymptotically with
time.

A flow is set up that is just sonic at the right-hand side of area change. This flow
is accelerated to supersonic speed by a portion of the incident rarefaction wave still
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Figure 16. MFD spatial profiles of (a) pressure, (b) flow velocity, (c) density and (d) entropy for the
interaction of a rarefaction wave with an area reduction from ¢ =0 to ¢t = 13.44 with At = 0.48.
Only part of the computational domain is shown. (P,/P, = 0.45, A,/A, = 0.40) MFD parameters:
97 nodes, C, = 0.0,C, =3x107°,0; =48x10™,0,=3,0,=2,0,=0.01,Q2 =2,B=0.25,0, =
1, w,=4,0,=1, 0, =0.

within the area change and the effects of increasing area on the flow. An upstream-
facing recompression shock wave forms within the area change and decelerates the
oncoming flow to a subsonic speed, which is further reduced by the remaining area
increase. The formation of this recompression shock causes a spatially distributed
contact surface of changing entropy and density which is swept downstream (most
readily seen in the entropy plot).

On the whole the solution is of high quality and is in good agreement with the
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Figure 17. mrD spatial profiles of density and node distributions at ¢ = 0, 0.96, 1.92, 2.88, 3.84, 4.80,
5.76, 6.72, 7.68, 8.64, 9.60, 10.56, 11.52, 12.48 and 13.44 resulting from the calculation described
in figure 16.

Figure 18. mrD distributions that typically occur for the interaction of a rarefaction wave with an
area reduction if Q" =0.¢=0, 0.96, 1.92, 2.88, 3.84, 4.80, 5.76, 6.72, 7.68, 8.64, 9.60, 10.56, 11.52,
12.48 and 13.44.

results of Gottlieb & Igra (1983). However, the solution of this particular problem
does illustrate a weakness of adaptive methods. Few nodes remain in the vicinity of
the contact surface because the change in density or temperature across the contact
surface is much smaller than the change across the other waves. The change in
entropy at the contact surface is the same as in the results of Gottlieb & Igra but the
nodes in the vicinity of the contact surface slowly drift apart in response to forces
external to the (very weak) contact surface. The resultant accelerated thickening of
the contact surface is most clearly illustrated by the spatial profiles of entropy.
Relative lack of resolution of very weak waves would seem likely to be common to
all adaptive methods. Whether lack of resolution of very weak waves is a serious
problem is dependent on what use the results of an adaptive calculation will be
applied. A short-lived disturbance in the MFD velocity profiles may be a result of the
reduced node concentration at the contact surface. Figure 17 shows typical node
distributions within the density profiles at various times.

If w, is increased to 4 or if w, is reduced to 1, the solution profiles are slightly
noisier. Doubling the Reynolds number also increases the noise in the solution
profiles but does not otherwise result in a noticeable change in the thickness of waves.

If ' is set to zero, then, as illustrated in figure 18, there is a great reduction of node
concentration in the interior of the stationary shock. (However, the CPU time is
reduced to about 19 min.) The nodes are swept towards the periphery of the
computational domain. The inadequately resolved recompression shock develops
disturbances. Increasing C, relative to C, can decrease the loss of nodes from the
shock, but this also prevents sufficient spread of nodes to resolve the behaviour of the
transmitted rarefaction wave. The Q’ terms are crucial to obtaining good solutions
to problems involving interactions of waves with area changes. The £’ terms
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counteract the tendency of the nodes to follow the characteristics of the solution
which in this case would cause most nodes to follow the moving flow features.

(¢) Results of MFE calculations

The MmrFE method was applied using the same initial conditions as those used in the
mFD calculations. The solution weights were w, = 1, w, = 4 and w, = 1. The penalty-
functions coefficients were C) = 0.0005, C, = 6 x 107, (', = 0.64 and C;, = 0.01 with
powers C, = 2 and C; = 1. The calculation required about 25 min CPU time to reach
t=13.44.

As illustrated in figure 19, the large value of C;/C, was unable to force retention
of a sufficient number of nodes within the stationary shock, and yet this still
prevented nodes from spreading to properly resolve the transmitted rarefaction.
Hence, there are oscillations propagating away from the recompression shock. The
horizontal-emphasis parameter was given a value of 0.65. This had the effect of
slightly increasing node spread to the right of the area change and of increasing the
execution speed to about eight times the value it would otherwise have been. Terms
analogous to the £ terms of the Mrp method have not yet been developed, but they
might improve the performance of the MFE method for such area-change problems.

11. Shock wave in a duct with an area enlargement

As illustrated in figure 20, a shock wave of Mach 1.80 in a gas with specific heat
ratio 1.4 impinges from the left on an area enlargement with 4, /4 equal to 0.667.
This was originally a test of Greatrix & Gottlieb (1982), who used the random choice
method to solve an inviscid set of equations using density, momentum density, and
total energy per unit volume as the principal variables.

(@) Initial conditions

An attempt was made to use discontinuous initial conditions similar to those used
by Greatrix & Gottlieb. That is, the shock was initially located between two adjacent
nodes. The initial values of the solution at the nodes ahead of the shock are set to
correspond to air at standard temperature and pressure with zero flow velocity. For
a shock with an initial Mach number Ug moving into a stationary gas, the normalized
pressure at the nodes behind the shock can be calculated in terms of P,,, the pressure
ratio through the shock, using the analytical Hugoniot relation (Zel’dovich & Raizer
1966), that is

12
p, =G y=1 (48)
v+1  y+1

The initial values in normalized form behind the shock wave of velocity, density and
temperature can be computed from P, as required using

Vs 2[ Py —1]

— = - : , 49
V115l #9)
)/—1+[)/+1jl’21
= — 5
P T y— 1) By (50)
— P
and T. = v+ Ity =111y (51)

Uyt Uy =1/
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(=1344'

normalized density

—4 0 4

normalized distance
Figure 19. MFE spatial profiles of density and node distributions at t = 0, 0.96, 1.92, 2.88, 3.84, 4.80,
5.76, 6.72, 7.68, 8.64, 9.60, 10.56, 11.52, 12.48 and 13.44 resulting from the interaction of a
rarefaction wave with an area reduction. (P,/P, = 0.45, A;/A4, = 0.40) MFE parameters: 97 nodes,
¢, =0.0005, C,=6x10"° (,=0.64, C,=2, C; =1, O;,=0.01, horizontal emphasis = 0.65,
overemphasis of viscosity =1, w;, =1, w, =4, w; = 1.

area enlargement

A 2 Ag
incident shock

Figure 20. Illustration of a normal shock wave moving in a channel before its impingement on
a smooth area change.

The MmrD method was used to solve (41)—-(43) with the same Reynolds number and
Prandtl number as were used in the shock-tube problem and with the nodes
distributed so that they were separated by a distance of 107* in the vicinity of the
shock. Nodes tended to enter the shock as the solution developed, so as to model the
transition. The nodes were sufficiently close together that Gibbs’ oscillations did not
develop. Unfortunately the size of the time-step was quite small because of the
tendency of nodes to migrate into the shock.

Much larger time-steps are obtained if the initial transition already contains many
nodes. As a result of much experimentation, it was determined that the most
satisfactory results could be obtained by imposing a Taylor profile on the initial
transition. After a value of Reynolds number is chosen, the initial pressure profile is
modelled using the hyperbolic tangent expression of Taylor given by (37) (if p is
replaced by P), with the initial thickness Ly, set to the Taylor thickness and with the
centre of the shock placed at X = —I. The nodes are distributed using the procedure
described in §9b. The values of velocity, density and temperature at a node are
computed using equations (49)—(51), with P, replaced by the value of P at the node.

The MFDp method is used to solve (41)—(43) using the Taylor-profile initial
conditions. As the calculation progresses the initial shock wave separates into a
shock wave and a trailing weak pressure pulse with an intervening contact surface.
The separation occurs for two reasons. The first is that (49)—(51) are exact only when
applied from the front of the shock to its rear. Secondly, a number of approximations

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

e

R
\
\\ \\
P

/

\
/[

A

P\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
£\

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

404 D. F. Haowken, J. S. Hansen and J. J. Gottlieb

are required to derive the Taylor profile. Thus, the Taylor profile does not match the
(more exact) numerical profile, as is clearly shown in the shock-profile figures of §9.
The contact surface and pressure pulse are generated as the result of a minor re-
adjustment of the solution within the shock wave. The ratios across the readjusted
shock wave remain within 0.1 % of their initial values.

The calculation is allowed to proceed until ¢ = 0.22, at which time the shock has
clearly separated from the trailing contact surface but has not yet reached the area
change. The nodes on either side of the shock wave, and every second node within
the shock wave, are removed. Replacement nodes having the shock-head and shock-
tail values of the solution are distributed on either side of the shock to form the initial
conditions (without pressure pulse or contact surface) for subsequent calculations.
Neumann reflection boundary conditions are used, but the left-hand and right-hand
boundaries are placed at X = —5 and X = 34, respectively, to avoid impingement by
waves during the course of the calculation.

(b) Results of mrp calculations

The MmrD method was applied to (41) (including the artificial viscosity term), (42)
and (43), with initial conditions at ¢ = 0.22 generated for a Reynolds number of
about 250 and Prandtl number of 0.71. The Reynolds number was ten times smaller
than that used in the shock-tube problem ; however, note that the domain was about
ten times larger, resulting in the same ratio of shock thickness to size of the domain.
A total of 94 nodes were used. The solution weights were w; = 1, v, = 4, and w, = 4,
with w, =0. 2" was equal to 4096 with the maximum-ratio-of-node-separation
parameter B set to L. The penalty-function coefficients were Cy = 0, C, = 6.4 x 1075,
C, = 8 and C = 0.004 with powers C, = 3 and (; = 2. The large values of C, and C,
were required to balance the very large value of £2’. The calculation required 77 min
execution time to reach t = 18.48. At t = 18.48, the value of At was about 0.073 and
the fractions of the total integration-time span, which used the first-, second-, third-
and fourth-order EPISODE solution methods, were about 4%, 64 %, 32% and
0.003 % respectively.

The artificial viscosity coefficient, u, was set equal to 0.03, just about as large a
value as could be used without disturbing the solution. If 4 was doubled, then the
execution speed was considerably faster, but the incident shock would emit a contact
surface and become slightly stronger as the solution profile within the shock adjusted
to the modification of (41). Much larger values of x caused a marked departure from
the solution ratios predicted by (49)—(51). If 4 was reduced to 0.01, no difference in
the incident shock was discernible, but the amount of noise in the MFD solution was
slightly increased and the execution speed was reduced by about 38 %.

Figure 21 a—d shows the resultant spatial profiles of pressure, flow velocity, density,
and entropy at various times. The incident shock is transmitted through the area
enlargement, leaving a reflected rarefaction wave with tail attached to the area-
change inlet. At early times, the entropy profiles reveal a contact surface trailing the
transmitted shock wave. The contact surface is produced by the weakening of the
incident shock as it is transmitted through the area enlargement. At later times, the
formation of an upstream-facing shock wave which is swept downstream causes a
region of increased entropy to be extended downstream of the upstream-facing shock
wave. The leading edge of the increased entropy region constitutes a second contact
surface.

At late times, the following flow behaviour is seen. The oncoming flow is
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Figure 21. MFD spatial profiles of (@) pressure, (b) flow velocity, (c) density and (d) entropy for the
passage of a shock wave through an area enlargement for ¢ = 0.44 to ¢ = 18.48 with At = 0.44. Only
part of the computational domain is shown. (Ug = 1.80, 4,/4 = 0.667.) Parameters: 94 nodes,
C,=0, C,=64x10"%, C;,=8, C,=3, C;=2, C;=0.004, Q =4096, B=025 o, =1,
W, =w; =4, w,=0.

accelerated to sonic speed at the area-change inlet by the reflected rarefaction. The
area enlargement causes a further acceleration to supersonic speed at the outlet of
the area change. A region of quasi-steady supersonic flow exists between the outlet
and the upstream-facing shock wave, which is slowly swept downstream. A quasi-
steady subsonic flow exists between the upstream-facing shock wave and the
originally transmitted shock.
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Figure 22 Figure 23
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Figure 22. MFD spatial profiles of density and node distributions at ¢ = 0.44, 2.20, 3.96, 5.72, 7.48,
9.24, 11.00, 12.76, 14.52, 16.28 and 18.04 resulting from the calculation described in figure 21.

Figure 23. mFDp spatial profiles of density and node distributions that typically result from
calculations, with £ equal to zero, of the passage of a shock wave through an area enlargement.
t=0.44, 0.88, 1.32, 1.76, 2.20, 2.64, 3.08, 3.52, 3.96, 4.40, 4.88 and 5.32.

The MrD calculation cannot anticipate the development of the upstream-facing
shock and, as shown in figure 22, does not concentrate nodes quickly enough after the
development of the shock to prevent a few kinks at the top of the shock at early
times. However, the node distribution improves significantly after the upstream-
facing shock wave has completely formed.

The spatial profiles of pressure, flow velocity and density are in good agreement
with those of Greatrix & Gottlieb (1982). However, since the change in density and
temperature across the contact surfaces is so small, the mFp algorithm does not
concentrate nodes there. The spreading of nodes and the relatively small Reynolds
number combine to produce contact surfaces that are quite thick as compared with
those produced by the calculations of Greatrix & Gottlieb. However, these contact
surfaces are so weak that they are not readily discernible except in the spatial profiles
of entropy.

Despite use of a relatively small Reynolds number, the shock waves are quite thin.
The entropy maxima within the shock waves, caused by heat conduction discussed,
for example, in Zel’dovich & Raizer (1966), are clearly resolved.

If the MFD calculation is repeated with reduced w, or w,, the contact surfaces
become less monotone because sensitivity to the weak contact surface is even further
reduced. However, an increase in w, or w, does not result in significant improvement
at the contact surfaces, but rather causes oscillations near the upstream-facing
shock.

Similar MFD calculations have been performed with the Reynolds number
increased by a factor of five. The initial contact surface was still not quite as thin as
in the calculations of Greatrix & Gottlieb at early times and was quickly spread out
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by the failure of nodes to concentrate about the very weak density transition. There
was also considerable kinking at the top of the upstream-facing shock wave.
Execution speed was reduced by a factor of at least 50 %.

The very large values of £’ were required to maintain an acceptable concentration
of nodes at the head and tail of the upstream-facing shock. Figure 23 exhibits the
inferior node distribution typical of that obtained for calculations in which © is set
to zero. In contrast to the results that were reported in §106, runs in which Q" was
of the order of unity were little better.

An MFD calculation of a shock incident on an area enlargement was not performed
but the results are expected to resemble those of an MFD calculation with £’ equal
to zero.

12. Concluding remarks

A newly developed MFD method with adaptive movement of nodes has been
presented, tested by means of a number of simple but good test problems, and
compared in formulation and performance with the MFE method of Miller (1981) and
Miller & Miller (1981). The mFp and MFE methods both move the nodes essentially
along the solution characteristics, except as modified by penalty functions and (for
the MFD method) €2 terms. The new £ terms developed for the MFD method result in
marked improvements in the adaptive node distribution, especially when the flow
contains stationary wave phenomena, as often occurs when shock and rarefaction
waves interact with area changes. Other benefits of the use of the © term include
improvement of shock-wave reflection from solid boundaries and increased
smoothness at the start and end of transitions through shock waves. Analogous
terms could be developed to improve the performance of the MFE method, but this
would still leave the MFE method with much longer CPU times for solving most
problems (because of the smaller time-steps that the MFE method uses and because
of the expense of computing integrals inherent to the MmFE method). The solution-
component weights w, through w, of the MFD method may usually be set to unity
with adequate results although small improvements can be achieved by using
slightly dissimilar weights, as was done for interactions of shock and rarefaction
waves with area changes, and a spherical implosion/explosion problem reported by
Hawken (1990).

The adaptive movement of nodes in both the MFD and MFE methods results in the
use of fewer nodes and significantly reduced CPU times for computing solutions to
problems governed by hyperbolic partial differential equations. However, these
advantages are partly offset by the increased difficulty to the user in selecting a good
initial distribution of nodes at the start of the computations, and also in selecting
appropriate values of coefficients associated with penalty functions and @ terms.
Although good selections of the initial node distribution and values of the penalty
functions and Q-term coefficients can greatly reduce the computational effort, this is
difficult because they are normally problem dependent. This frequently leads to an
undesirable trial-and-error procedure for their selection. Hence, future research
should not only concentrate on developing improved and newer error measures for
moving nodes, but it should also be aimed at developing appropriate methods such
as automatic procedures for selecting or specifying the resulting coefficients.

The present developments of the MFD method have been directed solely at solving
one-dimensional problems with two independent variables (e.g. time and space). This
is often useful before undertaking developments of solving multi-dimensional
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problems, even though some one-dimensional problems do not carry over to multi-
dimensional problems. In regards to multi-dimensional problems, it is anticipated
that the MFD method will have advantages of computational efficiency similar to
those of the MmrE method. However, we note here that the original expectations of the
MFE method in the early 1980s have not been fulfilled for solving multi-dimensional
problems as indicated by Miller (1986); two-dimensional MFE calculations do not
exhibit the large gains in computational efficiency typical of one-dimensional MFE
calculations except for some simple specialized problems and robust adaptive
algorithms for good node movement in two dimensions are not yet available. Hence,
the multi-dimensional MFE method has not found widespread application. According
to Zegeling & Blom (1990), a major difficulty in two-dimensional MFE calculations is
that the tendency of the nodes to follow the solution characteristics can cause
entanglement of the grid lines; the £ terms developed for this paper should offer a
method of overcoming the problem for a two-dimensional MFp method.

Financial assistance from the Natural Sciences and Engineering Research Council of Canada was
very helpful and is gratefully acknowledged.
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